随着指纹识别技术的完善,未来5年我国指纹技术行业将有近百亿元的市场等待着企业去开拓,指纹识别技术即将迎来一个黄金发展时期,市场前景广阔,二级市场上指纹识别概念受消息面利好刺激,表现抢眼,或强势爆发。 指纹识别采集与匹配
众所周知,人的指纹具有唯一性和稳定性的特征,即每一个人的指纹是独一无二的,两者之间不存在相同的指纹,而且每个人的指纹是相当固定的,一般不会随年龄和健康状况的变化而改变,因此可以通过指纹识别出人的身份。目前,国内外的自动指纹识别系统很多,但其结构大同小异,一般包括指纹的采集与分类、指纹的细节匹配及指纹的压缩与存储。
1.指纹的采集与分类
这是自动指纹识别系统(AFIS)运作的第一个环节。通过光学或CMOS指纹采集仪将活体指纹的图像录入系统,对图像进行分割处理,在保持有用指纹信息基本完整的前提下,剪去一些多余的图像信息,产生一个相对较小的指纹图,对该图进行增强处理减弱噪声,增强脊和谷的对比度,提高图像质量。然后提取图像的特征,生成方向数组,再通过指纹分析器,根据指纹的脊和谷流向,将其分为尖拱类、拱类、左环类、右环类及旋涡类等五种或更小的种类属别。指纹分类的主要目的是方便大容量指纹库的管理,减少搜索空间,加速指纹匹配过程。
2.指纹的采集
在指纹识别设备正常连接后,可以进行指纹的登记录入。在读者指纹的采集过程中,读者的指纹需要录入两次,第一次采集的指纹和第二次采集的指纹进行比对,如果成功系统将正常保存,并添加到指纹识别系统。
如果采集的指纹不合格,系统将给出声音提示。如果识别不合格,保存功能不能使用,需要重新采集。以对所采集的读者指纹信息在保存到数据库前进行双重质量控制。要判断采集指纹的质量,将第二次采集的指纹信息和第一次采集的指纹模板进行1:1的单一比对,以保证指纹的采集质量,避免违法、不合格指纹信息存入数据库。
3.指纹的细节匹配
这是自动指纹识别系统核心。一般采用的是Biokey算法,此算法是一种快速、准确的1:1和1:N指纹识别算法,在使用Biokey进行指纹识别时2000~6000枚指纹),不需要对指纹通过姓名、PIN等预先分类就可以在1~5S以下测试都在PentiumIII900MHZ128MB内存环境下进行)内轻松完成。
4.指纹的压缩和存储
为了节省存储空间,必须对指纹图像进行压缩。目前指纹图像数据压缩算法较常见的是JPEG、WSQ及EZW等,采用Biokey-WSQ基于自适应的标量量化和小波分解的图像压缩算法,该算法用于指纹图像压缩时,可以尽量保持指纹细节特征点信息,解压缩后对提取指纹细节特征精度的影响较小。WSQ算法在进行大压缩比率的指纹图像压缩时,还原解压后的指纹图像细节特征点的定位和有关信息保存的较好,对随后将要进行的指纹识别影响较小。
WSQ压缩比为1:20或1:15,即一个指纹图像可以压缩到6~10K,这个压缩比例采用这种算法是非常合适的。这样既节省了存储空间,而且在解压后又不影响模板特征点的提取。将其用于指纹图像压缩,并考虑到指纹图像识别的需要,从尽量保持关键点信息的角度改进了该算法。
指纹识别技术类型剖解
指纹图像的获取技术主要有4种类型:光学扫描设备(例如微型三棱镜矩阵)、温差感应式指纹传感器、半导体指纹传感器、超声波指纹扫描。
一、光学识别技术
借助光学技术采集指纹是历史最久远、使用最广泛的技术。将手指放在光学镜片上,手指在内置光源照射下,用棱镜将其投射在电荷耦合器件(CCD)上,进而形成脊线(指纹图像中具有一定宽度和走向的纹线)呈黑色、谷线(纹线之间的凹陷部分)呈白色的数字化的、可被指纹设备算法处理的多灰度指纹图像。
光学的指纹采集技术有明显的优点:它已经过较长时间的应用考验,一定程度上适应温度的变异,可达到500DPI的较高分辨率等,最主要是价格低廉。也有明显的缺点:由于要求足够长的光程,因此要求足够大的尺寸,而且过分干燥和过分油腻的手指也将使光学指纹产品的效果变坏。
光学指纹传感局限性体现于潜在指印方面(潜在指印是手指在台板上按完后留下的),不但会降低指纹图像的质量,严重时还可能导致2个指印重叠,显然,难以满足实际应用需要。此外,台板涂层及CCD阵列会随时间推移产生损耗,可能导致采集的指纹图像质量下降。但是具有无法进行活体指纹鉴别、对干湿手指的适用性差等缺点。
光学指纹识别系统由于光不能穿透皮肤表层(死性皮肤层),所以只能够扫描手指皮肤的表面,或者扫描到死性皮肤层,但不能深入真皮层。在这种情况下,手指表面的干净程度,直接影响到识别的效果。如果,用户手指上粘了较多的灰尘,可能就会出现识别出错的情况。并且,如果人们按照手指,做一个指纹手模,也可能通过识别系统,对于用户而言,使用起来不是很安全和稳定。
如去年底发生的内蒙古监狱越狱案件,越狱犯人就是砍下狱警的手指验证光学指纹机打开监狱门禁。还有近期各大媒体争相报道的,在淘宝网上花100元左右可以订做买到硅胶指模,可以轻易地验证通过光学指纹机,上班族专门用它代打指纹考勤。
此外,光学传感器中存在棱镜,其体积较大,一般为半导体的几倍甚至10倍大小,所以限制了其在小型设备上的应用。在类似考勤机、门禁等大设备上使用没有体积限制的问题,但在U盘、移动硬盘、手持设备上使用,体积成了最大的障碍。成本低一直以来被认为是光学传感器的最大优势,但由于其制造过程一致性较难保证,随着以电容传感器为代表的半导体传感器的大规模发展,光学传感器的成本优势也已经不再明显。虽然大多数公司还在使用光学传感器,但其发展趋势是新颖的、高质量的半导体电容指纹传感器。
二、温差感应式识别技术
温差感应式识别技术是基于温度感应的原理而制成的,每个像素都相当于一个微型化的电荷传感器,用来感应手指与芯片映像区域之间某点的温度差,产生一个代表图像信息的电信号。
它的优点是可在0.1s内获取指纹图像,而且传感器体积和面积最小,即目前通常所说的滑动式指纹识别仪就是采用该技术。缺点是:受制于温度局限,时间一长,手指和芯片就处于相同的温度了。
三、半导体硅感技术(电容式技术)
20世纪90年代后期,基于半导体硅电容效应的技术趋于成熟。
硅传感器成为电容的一个极板,手指则是另一极板,利用手指纹线的脊和谷相对于平滑的硅传感器之间的电容差,形成8bit的灰度图像。电容传感器发出电子信号,电子信号将穿过手指的表面和死性皮肤层,直达手指皮肤的活体层(真皮层),直接读取指纹图案。由于深入真皮层,传感器能够捕获更多真实数据,不易受手指表面尘污的影响,提高辨识准确率,有效防止辨识错误。
半导体指纹传感器包括半导体压感式传感器、半导体温度感应传感器等,其中,应用最广泛的是半导体电容式指纹传感器。
半导体电容传感器根据指纹的嵴和峪与半导体电容感应颗粒形成的电容值大小不同,来判断什么位置是嵴什么位置是峪。其工作过程是通过对每个像素点上的电容感应颗粒预先充电到某一参考电压。当手指接触到半导体电容指纹表现上时,因为嵴是凸起、峪是凹下,根据电容值与距离的关系,会在嵴和峪的地方形成不同的电容值。然后利用放电电流进行放电。因为嵴和峪对应的电容值不同,所以其放电的速度也不同。嵴下的像素(电容量高)放电较慢,而处于峪下的像素(电容量低)放电较快。根据放电率的不同,可以探测到嵴和峪的位置,从而形成指纹图像数据。
与光学设备多采用人工调整改善图像质量不同,电容传感器采用自动控制技术调节指纹图像像素以及指纹局部范围敏感程度,在不同环境下结合反馈信息生成高质量图像。由于提供了局部调整能力,即使对比度差的图像(如手指压得较轻的区域)也能被有效检测到,并在捕捉瞬间为这些像素提高灵敏度,生成高质量指纹图像。
半导体电容指纹传感器优点为图像质量较好、一般无畸变、尺寸较小、易集成于各种设备。其发出的电子信号将穿过手指的表面和死性皮肤层,达到手指皮肤的活体层(真皮层),直接读取指纹图案,从而大大提高了系统的安全性。
半导体硅感技术最重要的优点是能够达到活体指纹识别。还可以在较小的表面上获得比光学技术更好的图像质量,在1cm×1.5cm的表面上获得200-300线的分辨率(较小的表面也导致成本的下降和能被集成到更小的设备中)。体积小、成本低,成像精度高,而且耗电量很小,因此非常适合在安全防范和高档消费类电子产品中使用,被称为光学以后的第二代指纹识别技术。
半导体电容指纹传感器因制造工艺复杂,单位面积上传感单元多,包含高端的,IC设计技术、大规模集成电路制造技术、IC芯片封装技术等,所以电容指纹传感器几乎全部是由IC技术发达的国家或地区,如美国、欧洲、台湾等地设计制造的。目前国内只有极少数厂家有能力生产半导体指纹传感器。
但半导体硅感技术也有缺点,就是会受静电干扰,但可以通过安装时接地解决。以前成本较昂贵,近年来成本大幅度下降,与光学传感器的成本日益接近,是目前最理想的指纹识别技术。如银行金库和监狱等高危安保场所安防门禁系统,采用半导体硅感识别技术的指纹机用于门禁前端活体指纹识别,代替传统的密码、刷卡、光学指纹机,从而真正做到身份识别的惟一性,确保万无一失。
四、超声波技术
超声波指纹采集是一种新型技术,其原理是利用超声波具有穿透材料的能力,且随材料的不同产生大小不同的回波(超声波到达不同材质表面时,被吸收、穿透与反射的程度不同)。因此,利用皮肤与空气对于声波阻抗的差异,就可以区分指纹嵴与峪所在的位置。
超声波技术所使用的超声波频率为1×104Hz-1×109Hz,能量被控制在对人体无损的程度(与医学诊断的强度相同)。超声波技术产品能够达到最好的精度,它对手指和平面的清洁程度要求较低,但其采集时间会明显地长于前述两类产品,而且价格昂贵,也并不能做到活体指纹识别,所以目前使用稀少。
|